Abstract
Fiber laser cutting of CFRP sheets was investigated using a 2 kW multi-mode fiber laser, focusing on how the cut quality factors, such as kerf width, kerf depth, matrix evaporation width, matrix recession width, kerf taper angle, matrix damage zone, and cut surface morphology, change as laser power, laser scanning speed, and the number of laser passes are varied. By designing a systematic experiment on a large process window, several important parameters for kerf width, kerf depth, matrix evaporation width, and matrix recession width were identified, and using them, it was verified that the beam scanning speed is a dominant factor for minimizing thermal damages. Also, circular rings were observed in each carbon fiber at the cut surfaces, and it looked as if they were generated when each fiber was thermally fused in the radial direction. A larger number of laser passes was found to contribute to a smooth surface morphology, because of the formation of highly-fused surfaces, which prevents fiber delamination and pull-outs. Optimum process conditions were also identified by comparing various cut quality factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.