Abstract
The current study aimed to identify potential chromatin remodeling-related biomarkers and the associated molecular mechanisms in pulpitis. Differentially expressed genes associated with chromatin remodeling (DECRGs) were identified using datasets from an online database. Enrichment and protein–protein interaction (PPI) network analyses were performed based on the DECRGs to identify biomarkers for pulpitis, followed by GSEA (gene set enrichment analysis). The diagnostic value of these biomarkers were evaluated by ROC (Receiver operating characteristic) and nomogram investigation. Next, microRNA(miRNA)-mRNA-TF (transcription factor), ceRNA (competing endogenous RNA), and drug prediction networks were constructed based on the biomarkers. Finally, reverse transcription-real-time quantitative PCR analysis and western blot were performed to validate the results of the bioinformatic analysis. This study identified 87 DECRGs between pulpitis and normal dental pulp samples that were mainly enriched in chromatin remodeling functions and pathways in cancer. A PPI network identified five biomarkers: TNF, STAT3, MYC, ACTB, and MAPK8. ROC and nomogram analyses demonstrated the diagnostic value of these biomarkers. GSEA of biomarkers such as STAT3 was mainly enriched in functions such as the B cell receptor signaling pathway. A biomarker-disease network and miRNA-mRNA-TF interactions were constructed using these biomarkers. A ceRNA network was constructed with interactions including chr22-38_28785274-29006793.1-miR-125b-5p-STAT3. A drug-gene network was established using 170 drugs and five biomarkers. Finally, qRT-PCR was used to validate the expression of all five biomarkers identified by the bioinformatics analysis. TNF, STAT3, MYC, ACTB, and MAPK8 are potential chromatin remodeling-related diagnostic markers for pulpitis. Moreover, long non-coding RNA (lncRNA) chr22-38_28785274-29006793.1 might function as a ceRNA to regulate the expression of the chromatin remodeling gene STAT3 by sponging miR-125b-5p in pulpitis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have