Abstract

The results of research into degradation of volt-ampere characteristics of light emitting diodes produced on the base of AlGaInP heterostructures with multiple quantum wells are presented on the example of light emitting diodes (emission wavelengths 623 nm and 590 nm) under gamma quantum and fast neutron radiation in passive powering mode. The shifts of volt-ampere characteristics into the higher voltage range have been observed in conditions of increasing neutron fluence and radiation dose. The observed increase in the resistance of ohmic contacts is caused by the rising resistance of adjacent area, which in its turn results from the changing mobility of charge carriers. The latter varies with the growth of introduced defects under irradiation. Two different areas of current generation have been identified. A mechanism of current generation depends on injected charge carriers in the range of mid-level electron injection. Moreover, the range of high electron injection is distinguished by changing resistance of light emitting diode cores alongside with current generation conditioned by charge carrier injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.