Abstract

The 2-methylcitrate cycle as the primary way to metabolize propionate was investigated using metabolic profiling. For this purpose, a fast harvesting procedure was applied in which cells growing in liquid minimal medium were harvested by a short centrifugation and freeze-dried. Subsequently, gas chromatography-mass spectrometry of polar extracts derivatized by MSTFA was employed for metabolite characterization. Routinely more than 300 different peaks were obtained in the chromatograms, and 74 substances were identified unequivocally by using pure standards. The procedure provided reliable data which closely relate to prior knowledge on flux distributions during growth on glucose and acetate as carbon sources. Propionate degradation via the 2-methylcitrate cycle was demonstrated on the metabolite level by the detection of the intermediates 2-methylcitrate and 2-methylisocitrate. Further characterization of the 2-methylcitrate cycle was carried out by comparing different mutant strains of this pathway. The growth deficit of a prpD2-mutant strain observed when propionate is added to a culture growing on acetate indicates that the toxic effect of propionate is based on the accumulation of 2-methylcitrate. It could also be shown that the 2-methylcitrate cycle is active in the absence of propionate and might fulfill house-keeping functions in the degradation of fatty acids or branched-chain amino acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.