Abstract

Fungi of the complex Paracoccidioides spp. are thermodimorphic organisms that cause Paracoccidioidomycosis, one of the most prevalent mycoses in Latin America. These fungi present metabolic mechanisms that contribute to the fungal survival in host tissues. Paracoccidioides lutzii activates glycolysis and fermentation while inactivates aerobic metabolism in iron deprivation, a condition found during infection. In lungs Paracoccidioides brasiliensis face a glucose poor environment and relies on the beta-oxidation to support energy requirement. During mycelium to yeast transition P. lutzii cells up-regulate transcripts related to lipid metabolism and cell wall remodeling in order to cope with the host body temperature. Paracoccidioides spp. cells also induce transcripts/enzymes of the methylcitrate cycle (MCC), a pathway responsible for propionyl-CoA metabolism. Propionyl-CoA is a toxic compound formed during the degradation of odd-chain fatty acids, branched chain amino acids and cholesterol. Therefore, fungi require a functional MCC for full virulence and the ability to metabolize propionyl-CoA is related to the virulence traits in Paracoccidioides spp. On this way we sought to characterize the propionate metabolism in Paracoccidioides spp. The data collected showed that P. lutzii grows in propionate and activates the MCC by accumulating transcripts and proteins of methylcitrate synthase (MCS), methylcitrate dehydratase (MCD) and methylisocitrate lyase (MCL). Biochemical characterization of MCS showed that the enzyme is regulated by phosphorylation, an event not yet described. Proteomic analyses further indicate that P. lutzii yeast cells degrades lipids and amino acids to support the carbon requirement for propionate metabolism. The induction of a putative propionate kinase suggests that fungal cells use propionyl-phosphate as an intermediate in the production of toxic propionyl-CoA. Concluding, the metabolism of propionate in P. lutzii is under regulation at transcriptional and phosphorylation levels and that survival on this carbon source requires additional mechanisms other than activation of MCC.

Highlights

  • Paracoccidioidomycosis (PCM) is a systemic and granulomatous mycosis, caused by thermodimorphic fungi of the Paracoccidioides genus, a complex of organisms geographically restricted to Latin America with high prevalence in Brazil, Colombia, Venezuela and Argentina (Brummer et al 1993)

  • Paracoccidioides spp. utilizes propionate as a carbon source Paracoccidioides spp. transcripts/enzymes related to propionate metabolism had been identified in infectionmimicking conditions (Bailao et al 2006; Bailao et al 2007; Lima et al 2014; Parente et al 2011; Pereira et al 2009; Rezende et al 2011)

  • Our analysis revealed the presence of orthologs of all three- methylcitrate cycle specific enzymes in the three genomes analyzed (P. lutzii-Pb01, P. americana-Pb03 and P. brasiliensis-Pb18, Table 1)

Read more

Summary

Introduction

Paracoccidioidomycosis (PCM) is a systemic and granulomatous mycosis, caused by thermodimorphic fungi of the Paracoccidioides genus, a complex of organisms geographically restricted to Latin America with high prevalence in Brazil, Colombia, Venezuela and Argentina (Brummer et al 1993). Molecular and biochemical methods have been applied to understand the metabolic status of Paracoccidioides spp. yeast cells in conditions mimicking infection. Differential gene expression studies have shown that P. lutzii yeast cells employ fermentative metabolism while mycelial cells use aerobic routes for energy production (Felipe et al 2005), which was subsequently confirmed by proteomic studies (Rezende et al 2011). In a lung infection model proteomics and transcriptomics data revealed that P. brasiliensis utilizes the betaoxidation pathway for energy production (Lacerda Pigosso et al 2017). Taken together, these observations strongly suggest that Paracoccidioides spp. present a niche- and species-dependent metabolic adaptation during host infection

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call