Abstract

Cellulose is a biopolymer that has broad potential applications including in building insulation, and it was studied for its potential as a filler material. A closed-cell polyurethane foam insulation formulation was developed, and cellulose filaments (CFs) were introduced at varying percentages. The viscosity and morphology of the formulations were studied, as were different foam properties, such as water vapor permeability, reaction kinetics, density, porosity, thermal conductivity, and compressive strength foams as a function of cellulose filaments content. A commercial foam was also tested as a reference. The cellulose filaments impacted the formulations’ viscosity, and all the properties of the resulting insulating material. For example, samples containing 5% of cellulose filaments were found to perform differently than samples containing 0%, 1% and 2.5% mainly due to agglomerate formation, which impacted cell size (about 0.1 mm2 at 0%, 1% and 2.5% versus a mean of over 0.4 mm2 at 5%), and differential vapor sorption (with a mass change of 2%wt at 0 parts per hundred of polyol versus 2.5%wt at 5% from 0% to 95% relative humidity). However, the required performances by the standards of polyurethane foam insulation material were always fulfilled regardless of the amount of cellulose filaments present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call