Abstract
Currently, carbon-based catalysts integrated with macroporous catalytic membrane have aroused considerable attention for environmental remediation because of its practicability and high efficiency. Herein, nitrogen doped carbon nanotube hybrids (Fe-Co@NC-CNTs) decorated with multiple active species (Fe3Co7/CoFe2O4@Fe/CoNC) were designed through N-molecule assisted pyrolysis of bimetallic (Fe/Co) metal–organic frameworks, and then immobilized on poly(vinylidene fluoride) (PVDF) membrane to construct macroporous Fe-Co@NC-CNTs/PVDF catalytic membrane via directional freezing technique, where active sites were efficiently exposed for oxidants and target pollutants. As expected, Fe-Co@NC-CNTs/PVDF membrane successfully achieved almost 100% bisphenol A (BPA) degradation after 40 min via PMS activation, which was significantly overperformed the majority of conventional carbon-based catalysts. Besides, we found that Fe-Co@NC-CNTs/PVDF membrane not only exhibited ideal catalytic and self-cleaning property in humic acid (HA)-BPA coexistence system, but also maintained the excellent reusability and ultrahigh water flux (10464.45 L m−2 h−1) even after 5 cycles. Notably, in EPR analysis and quenching experiments, it was found that sulfate radicals (SO4·− and ·OH) and singlet oxygen (1O2) participated the degradation process while 1O2 made a major contribution. More significantly, this study is very meaningful for the development of novel catalytic self-cleaning membranes with PMS activation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have