Abstract
Conductivity, carrier concentration and carrier mobility in graphene were investigated as a function of time in response to ionized donor and acceptor adsorbates. While a reduction in conductivity and hole density in graphene was observed upon exposure to a weak electron donor NH3, the carrier mobility was found to increase monotonically. The opposite behavior is observed upon exposure to NO2, which is expected based on its typical electron withdrawing property. Upon exposure to C9H22N2, a strong donor, it resulted in the transformation of graphene from p-type to n-type, although the inverse variation of carrier concentration and mobility was still observed. The variational trends remained unaltered even after intentional introduction of defects in graphene through exposure to oxygen plasma. The responses to C9H22N2, NH3 and NO2 exposures underline a strong influence by ionized surface adsorbates that we explained via a simple model considering charged impurity scattering of carriers in graphene.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have