Abstract

The environmental contamination of heavy metals has grown over the last several decades along with global industrialization and now constitutes a serious threat to human health. In this research, high cadmium (Cd) and nickel (Ni) resistant bacteria that were chosen for heavy metal biosorption were isolated from the Industries Factory in Sari, Mazandaran, Iran. Pseudomonas aeruginosa was recognized as the isolated bacterium based on its morphological, physiological, biochemical, antibiotic resistance testing, and 16S rRNA sequences. The bacteria had the highest concentrations of resistance to Cd (up to 1600ppm) and Ni, according to the Minimum Inhibition Concentration (MIC) test (up to 2000ppm). Single-factor studies in single and binary systems were used to examine the effects of temperature, contact duration, pH value, starting Cd and Ni concentration, and biomass dose on the Cd and Ni adsorption by P. aeruginosa. The Cd and Ni biosorption in binary solutions was optimized using the response surface methodology (RSM) based on Central Composite Design (CCD). The investigation revealed that at pH 7.0, 45°C, and 1.5 gL-1 biomass dose, the greatest biosorption efficiency for Cd and Ni was 92.43 percent and 88.45 percent, respectively. According to the adsorption of Cd and Ni in urban water, under these similarly extreme conditions, Cd adsorption drops to 54% and Ni to 60%. Analysis Potential functional groups involving interactions between cells and metal ions were identified using Fourier transform infrared spectroscopy (FTIR). Different compounds and heavy metal ions were found to have been adsorbed to the surface of the biosorbent by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS). It was determined that P. aeruginosa had a high rate of Cd and Ni adsorption and that variations in pH level had a greater impact than other parameters. The findings imply that P. aeruginosa biomass may be an effective, economical, and environmentally friendly method for removing Cd and Ni from contaminated settings. It also has a reasonable capacity for biosorption in both a natural environment and a laboratory environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call