Abstract

Patients with bladder dysfunction are unable to perceive bladder volume and urinate spontaneously, and hence usually require catheterization. Personalized catheterization can effectively reduce the risk of urinary tract infections caused by catheterization. Electrical impedance tomography (EIT) can provide an effective tool for personalized catheterization by monitoring bladder volume. This study exploits the fringe effect of a 2D EIT sensor to derive the 3D volumetric information about bladder and improve the measurement consistency and accuracy of bladder volume under varied urine conductivities. The EIT sensor is optimized regarding the specified application of fringe effect. The parameters to be optimized include the electrode arrangement, the distance of electrode plane from bladder bottom, and the number of electrodes. Three evaluation criteria are proposed for the optimization. Simulation and experiment confirm the feasibility of the fringe effect-based method for bladder volume measurement, and the performances of the optimized sensor are illustrated. It is concluded that the fringe effect-based method has a better measurement consistency and accuracy against urine conductivity than the widely-used global impedance-based method, and hence provides a new promising alternative for bladder volume measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.