Abstract

In this study, the austenite transformation behaviour in a medium-Mn (MMn) steel is investigated during heat treatments that replicate those occurring in low-temperature hot stamping (LTHS), with the aim of better understanding this behaviour to optimise heat-treatment design. The austenitisation behaviour and critical phase transformation temperatures during the LTHS heating process and their dependence on heating conditions are investigated using dilatometry with a Gleeble 3800 thermal-mechanical simulator, covering heating rates of 1–25 °C s−1 and soaking temperatures of 630–900 °C. Both a higher heating rate and higher soaking temperature are found to be beneficial to shorten the time required for obtaining a given austenite fraction. The martensite start temperature (Ms) shows a rapid increase with increasing soaking temperatures when austenitisation is partial, and a slower increase after full austenitisation. Excellent ultimate tensile strength values of around 1750 MPa and total elongation values of around 9.3 % are obtained for the material after the LTHS heating process. A physically based model describing the austenitic transformation under these conditions has been adopted and calibrated. The model shows good agreement with austenitic transformation diagrams constructed from experimental data, and thus can function as a guide for selecting optimum heat-treatment parameters for LTHS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.