Abstract

Soy-based bio-adhesives are considered as potential substitutes for formaldehyde-based wood adhesives due to their environmental safety and broad availability. However, high curing temperatures (120–180 °C) makes them less energy efficient for wood processing. In the present study, an ambient temperature-curable soy-based adhesive was prepared via the emulsion polymerization of soy flour and styrene. The results of Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1HNMR) confirmed that N-methylolacrylamide had grafted onto the soy flour components, and subsequently copolymerized with styrene. The developed soy-based adhesive achieved a wet shear strength of 1.04 MPa with 5% styrene and 8% pMDI, which exceeded the bonding strength requirements of plywood for exterior applications. Soy flour components are essential for this ambient temperature-curable adhesive system. The emulsion soy-based adhesive facilitates moisture evaporation at ambient temperature, and polymeric methylenediphenyl diisocyanate (pMDI) was introduced to produce a crosslinked structure with high water resistance and thermal stability. The soy-based adhesive developed in this study showed great potential in wood composites thanks to its high performance and low curing temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call