Abstract
Two nonequilibrium processes (melt-spinning and ball-milling) were successfully employed to synthesize Al1−xPbx(x= 5, 10, 20, 30 wt. %) nanocomposites with distinct microstructures. In the melt-spun (MS) Al–Pb alloys, the nanometer-sized Pb particles are uniformly distributed in the micrometer-grained Al matrix and have an orientational relationship with the matrix, while in the ball-milled (BM) samples, both Pb and Al components are refined with prolonged milling time, forming nanocomposites with Pb particles homogeneously dispersed into the Al matrix. The minimum particle size of Pb in the milled samples linearly increases with the Pb content. The microhardness of the BM Al–Pb samples is much larger than that of the MS samples, which mainly results from strengthening effects of the nanometer scale Al grains following the Hall–Petch relationship. The microhardness for both BM and MS Al–Pb samples varies with the Pb content, and maximum hardness for both samples exists when Pb content is about 5 wt. %, indicating that small amounts of Pb, in the form of nanoparticles, may strengthen the Al matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.