Abstract

We report on a new model for simulating wave propagation in two-dimensional photonic crystals (PhCs) by means of Green’s functions rearranged to fit on the geometrical and physical properties of the structure under investigation. The model can take into account physical effects occurring when the PhC is excited by either a point-like source, for the analysis of extended crystals with line and point defects, or a plane wave coming from infinite, to investigate mirrors and microlenses. The model has been used for studying a Fabry–Perot cavity to evaluate its response in presence of a Hankel source or a plane wave excitation. A parametric investigation of the filter response as a function of the cavity length has been carried out and the best conditions to obtain an increase of quality factor of each resonant cavity mode have been determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call