Abstract

We have investigated the influence of Ag nanorod radius (r) on the resonant modes of a two-dimensional plasmonic photonic crystal (PPC) with dipole sources embedded into the central vacancy area, using finite-difference time-domain methods. Both the localized surface plasmon (LSP) mode of individual Ag nanorods and the resonant cavity mode of PPC are found to vary as a function of r. The resonant cavity mode is strongly enhanced as r is increased, while the LSP signal will eventually become no longer discernable in the Fourier spectrum of the time-evolved field. An optimized condition for the nanocavity field enhancement is found for a given PPC periodicity (e.g. d = 375 nm) with the critical nanorod radius r c = d/3. At this point the resonant cavity mode has the strongest field enhancement, best field confinement and largest Q-factor. We attribute this to competition between the blocking of cavity confined light to radiate out when the cavity resonant frequency falls inside the opened photonic stopband as r reaches r c, and the transfer of cavity mode energy to inter-particle plasmons when r is further increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.