Abstract

This paper mainly focuses on the investigation and analysis of a novel consequent-pole flux-intensifying memory machine (CP-FIMM). The proposed CP-FIMM exhibits the advantages of a satisfactory flux-regulation range, reduction of the required magnetizing current magnitude, as well as similar torque with much less PM utilization compared to its conventional counterpart. By designing the q-axis flux barriers, the flux-intensifying structure can be realized to enhance the demagnetization withstand capability of the CP-FIMM. The machine topology and operating principle are described. Moreover, the equivalent magnetic circuit model is developed to highlight the performance improvement of the proposed CP-FIMM. Finally, the electromagnetic performance of the proposed CP-FIMM is compared with that of a benchmark conventional FIMM by 2-D and 3-D finite element analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.