Abstract

In this research, geometric parameters were given in dimensionless form by the Buckingham pi dimensional analysis method, and a series of dimensionless groups were found for deep drawing of the round cup. To find the best group of dimensionless geometric parameters, three scales are evaluated by commercial FE software. After analyzing all effective geometric parameters, a fittest relational model of dimensionless parameters is found. St12 sheet metals were used for experimental validation, which were formed at room temperature. In addition, results and response parameters were compared in the simulation process, experimental tests, and proposed dimensionless models. By looking at the results, it very well may be inferred that geometric qualities of a large scale can be predicted with a small scale by utilizing the proposed dimensionless model. Comparison of the outcomes for dimensionless models and experimental tests shows that the proposed dimensionless models have fine precision in determining geometrical parameters and drawing force estimation. Moreover, generalizing proposed dimensionless model was applied to ensure the estimating precision of geometric values in larger scales by smaller scales.

Highlights

  • Process performance and better control of product quality are the main area of active research for the deep drawing process as the complex form of the sheet metal forming process

  • This study demonstrates that how the required geometrical parameters for designing and manufacturing of deep drawing process can be made in dimensionless form by Buckingham pi theorem

  • Considering the fact that there is no investigation on the dimensionless parameters for sheet metal forming, the main purpose of the current study is to suggest new dimensionless models for reducing the manufacturing costs by predicting drawing force as the crucial factor to evaluate the flawless quality of the deep drawing process in its original large size by small scale laboratory samples

Read more

Summary

Introduction

Process performance and better control of product quality are the main area of active research for the deep drawing process as the complex form of the sheet metal forming process. The quality of the process is still highly dependent on trial and error over large sizes which require elevated production costs. Finite element analysis (FEM) is used which can be computationally costly and highly dependent on constitutive laws. Because of the simplification of FEM on constitutive laws and boundary conditions, it cannot cover the wide variety of physical activities across the wide range of length scales. The experimental tests are essential for verifying FEM results. It is important to select the proper process parameters to achieve flawless parts

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call