Abstract

AbstractThis paper describes three-dimensional (3D) grain shape characteristics of returned lunar soil (No. 60501) and its numerical simulation by using the image-based discrete-element method (DEM). First, the lunar soil sample was investigated by X-ray computed tomography (CT) at the SPring-8 facility. Next, the obtained grain shapes were modeled by an original technique based on a clumped sphere method. The CT images were processed by an originally developed image analysis, and 74 grains were identified. Based on their 3D shapes and intraparticle voids and cracks, the grains were classified into four categories: (1) agglutinate (ag), (2) breccia type A (brA), (3) breccia type B (brB), and (4) plagioclase (pl). The content ratio of each grain category favorably agreed with those reported in previous studies. The 3D shape indices, namely, the aspect, flatness, and elongation ratios; the Krumbein’s sphericity; and the newly proposed volume ratio to ellipsoid were computed for 74 grains. Evaluating the dif...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call