Abstract
This study is part of the preliminary research for the Chang’e 7 project in China. The Chang’e 7 project plans to drill to penetrate the lunar polar soil and collect lunar soil samples using a spiral groove structure. Ice in the cold environment of the lunar polar region is one of the important targets for sampling. In the vacuum environment of the lunar surface, icy soil samples are sensitive to ambient temperature and prone to solid–gas phase change as the temperature increases. To predict the temperature range of lunar soil samples, this study analyzed the effect of thermal parameters on the temperature rise of lunar soil particles and the drill using discrete element simulation. The parameters included in the thermal effect analysis included the thermal conductivity and specific heat capacity of the drilling tools and lunar soil particles. The simulation showed that the temperature of the icy lunar soil sample in the spiral groove ranged from −127.89 to −160.16 °C within the thermal parameter settings. The magnitude of the value was negatively correlated with the thermal conductivity and specific heat capacity of the lunar soil particles, and it was positively correlated with those of the drilling tools. The temperature variation in the drill bit ranged from −51.21 to −132 °C. The magnitude of the value was positively correlated with the thermal conductivity and specific heat capacity of the lunar soil particles and the thermal conductivity of the drilling tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.