Abstract
This study presents a novel fault detection method in car gear steering systems, employing MSC Adams and MATLAB simulations to analyze angular acceleration from the outer tie rod. The approach closely mimics real accelerometer data to differentiate between normal and faulty conditions, including wear and obstacle navigation. Emphasis is on noise robustness, utilizing advanced noise injection and denoising techniques. The efficacy of wavelet scattering, discrete wavelet transform (DWT) methods, and classifiers like Support Vector Machines (SVM) and Neural Networks (NN) is extensively evaluated. Among fifteen fault detection methods, the combination of wavelet scattering with Long Short-Term Memory (LSTM) Neural Networks, optimized with Adam tuning, is notably stable across four scenarios. The research highlights the importance of precise feature selection, employing techniques like Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Recursive Feature Elimination (RFE). This research significantly advances the reliability of autonomous driving systems and provides essential insights into fault detection in gear steering systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.