Abstract
Crystalline maltodextrin particles (CMPs) were investigated using polarization-sensitive second harmonic generation (PSHG) microscopy to determine changes in their crystalline organization due to crystal type (A- and B-type) and hydration for application as starch model systems. Optimization of their synthesis resulted in intense SHG emission, exceeding maize starch granules. PSHG data showed that CMPs have a radial macrostructure with respect to their nucleation regions, fitted ρ values of 2-6, and some similar hydration variations, mimicking starch granules and validating that CMPs may be used as a model system for improved understanding of the SHG properties and applications of starch granules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.