Abstract

In this paper, we investigate loss mechanisms in piezoelectric-on-silica bulk acoustic wave resonators, including those resulting from thermoelastic damping (TED), surface roughness, and supporting tethers. Alternate resonator designs, piezoelectric materials, and fabrication processes are demonstrated to empirically test these loss mechanisms. Quality factors ( Qs ) in the order of $\sim 16$ 000 at a center frequency of 5 MHz have been consistently measured for aluminum nitride (AlN)-on-silica coupled-ring resonators. It is shown that neither TED nor surface losses are the dominant sources of loss for AlN-on-silica resonators in the megahertz regime. Instead, it is suggested that charge redistribution loss resulting from non-uniform strain across the piezoelectric layer is the dominant loss mechanism, with a charge redistribution ${Q}$ of $\sim 38$ 000 at 5 MHz for AlN-on-silica devices. When all loss mechanisms are considered, the total ${Q}$ is estimated to be 25000, a value comparable to the measured results of the piezoelectric-on-silica resonators of this paper. [2015-0004]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.