Abstract

Several hydraulic modelling approaches have been proposed previously to simulate pressure - deficient operating conditions in water distribution networks more realistically. EPANET-PDX is a pressure-driven extension of the EPANET 2 hydraulic simulation model that has an embedded logistic nodal head-flow function. The pressure-driven analysis algorithm in EPANET-PDX was investigated, to improve its performance under conditions of extremely low pressure. By integrating a line minimization procedure fully in the computational solution of the system of equations, the algorithm’s consistency was improved by increasing its computational efficiency under conditions of extremely low pressure. The examples considered demonstrated that the pressure-driven analysis algorithm proposed is robust, computationally efficient, and the line minimization procedure is applied frequently. Overall, the results suggest that the algorithm is reliable. The formulation proposed is significantly faster than the previous model under conditions of extremely low pressure. The hydraulic and water quality modelling functionality of EPANET 2 was preserved. For the operating conditions with satisfactory pressure, where direct comparisons with EPANET 2 were possible, EPANET 2 was consistently faster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.