Abstract

Al–Cu–Mn (Zr) aluminum alloys possess high strength and manufacturability without operations of thermal treatment (TT). In order to investigate the fabrication possibility of the aluminum boron-containing alloy in the form of sheet rolling with an increased strength without TT, Al–2% Cu–1.5% Mn–2% B and Al–2% Cu–1.5% Mn–0.4% Zr–2% B alloys are prepared. To exclude the precipitation of refractory boride particles, smelting is performed in a RELTEK induction furnace providing intense melt stirring. The smelting temperature is 950–1000°C. Pouring is performed into graphite molds 40 × 120 × 200 mm in size. It is established using computational methods (Thermo-Calc) that manganese forms complex borides with aluminum and zirconium at the smelting temperature; herewith, a sufficient amount of manganese remains in liquid, while zirconium is almost absent. The formation of AlB2Mn2 complex boride is proven; however, the amount of manganese remaining in the solid solution is sufficient to form the particles of the Al20Cu2Mn3 phase in amounts of up to 7 wt %. Boron stimulates the isolation of Al3Zr primary crystals in the alloy with zirconium; in connection with this, an amount of zirconium insufficient for hardening remains in the aluminum solid solution. The possibility of fabricating thin-sheet rolling with a thickness smaller than 0.3 mm with homogeneously distributed accumulations of the boride phase with a particle size smaller than 10 μm is shown. A high strength level (up to 543 MPa) is attained without using quenching and aging due to the precipitation of dispersoids of the Al20Cu2Mn3 phase during hot deformation (t = 450°C).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.