Abstract

A cellular automation (CA) model has successfully been used to model the development of microstructure of an aluminum alloy during solidification to produce detailed structure maps for the solidified alloys. More recently, the application of CA models to practical castings/solidification conditions has attracted increasing research interest. However, the determination of the calculation parameters of any model associated with nucleation is difficult. Accordingly, this work investigates the detailed effect of the six parameters of nucleation on microstructure formation and morphology as well as the grain size by cellular automaton-finite control volume method (CAFVM). The nucleation parameters can be determined or estimated by comparing the calculated and experimental results, which enables a more practical prediction of the microstructure (morphology and grain size).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.