Abstract

Indium tin oxide (ITO) films with various thicknesses are deposited on glass substrates using a DC magnetron sputtering technique. The microstructure and chemical composition of the sputtered samples are examined by scanning electron microscopy (SEM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray Spectroscopy (EDS). Two-layer and three-layer optical models of the sputtered ITO films are constructed for fitting the experimental results of the spectroscopic ellipsometry. The results obtained from the two models for the resistivity, carrier density and carrier mobility are compared with those obtained via Hall effect measurements. Finally, the three-layer optical model is used to evaluate the refractive index and extinction coefficient spectra of the various samples. In general, the present results show that the three-layer model, in which the transition layer between the ITO film and the glass substrate is included, provides a better approximation of the SE results than the two-layer model. However, both models yield a reasonable estimate of the Hall resistivity. The results obtained using the three-layer model show that the carrier density and carrier mobility in the bulk layer are lower and higher, respectively, than those in the transition layer. In addition, it is shown that the refractive index of the bulk layer is lower than that of the transition layer in the UV and visible spectrum. Moreover, the extinction coefficient of the transition layer is significantly higher than that of the bulk layer in the near IR-region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call