Abstract
Ganoderic acid A (GAA) exhibited neuron protection in in vitro epilepsy study, but no study has been done in vivo. Rats were administered (i.p.) pentylenetetrazole daily for 28 days to induce seizure. Rats with grade II or above of epileptic score were divided into three groups and given placebo, sodium valproate, or GAA treatment, respectively, for 7 days. The electrical signals of brain were monitored with electroencephalography (EGG); epileptic behavior was assessed using the Racine scale; morphological changes and apoptosis rate of cortical neurons were assessed with H&E staining and TUNEL staining, respectively. Protein expression of calcium-sensing receptor, p-ERK, p-JNK, and p-p38 in hippocampal tissue and Bcl-2, cleaved caspase-3, and Bax in cortical tissues was observed by Western blot and immunohistochemistry assay, respectively. After GAA treatment, apparent seizure-like EEG with significant arrhythmic disorder and spike waves was reduced or disappeared, and wave amplitude of EEG was reduced significantly. GAA showed similar effect with sodium valproate treatments on epilepsy. There were an apparent improvement of the epileptic behavior and a significant increase in the epileptic latency and shortening of the epileptic duration in the treatment group compared to control. GAA treatment ameliorated the nuclear pyknosis of neurons which appeared seriously in the epilepsy group. GAA treatment significantly reduced the cortical neuron apoptosis of epilepsy and the expression of calcium-sensing receptor, p-P38, p-JNK, cleaved caspase-3, and Bax but increased the expression of both p-ERK and Bcl-2. In conclusion, GAA treatment showed strong antiepileptic effect by decreasing apoptosis in cortical neuron and the expression of calcium-sensing receptor and stimulating the MAPK pathway.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have