Abstract
Alzheimer's disease (AD) is popularly believed to be triggered by the aggregation of amyloid beta 1-42 (Aβ-42) peptides, eventually leading to neurodegeneration. Our study delves into the influential role played by Green Iron Oxide Nanoparticles (GIONP). GIONP are typically synthesized using a green chemistry approach, imposing curcumin as a biocompatible reducing and capping agent, leveraging its inherent antioxidant, anti-inflammatory, and neuroprotective attributes. Herein, our research particularly aims to decipher whether GIONP modulates the secondary structure of Aβ1-42 peptides with a close consideration to the surrounding physiological factors, as well as the membrane bilayer probable conformation changes. Raman spectroscopy was employed to investigate the interaction between GIONP and Aβ1-42 aggregates, demonstrating significant alterations in secondary structure dynamics of Aβ1-42 polypeptide. Fourier-transform infrared (FTIR) spectroscopy shed light on the chemical interactions between GIONP and curcumin, a capping agent. X-ray diffraction (XRD) analysis was performed to determine the crystalline structure and phase purity of the synthesized GIONP, providing insights into their stability and structural integrity. GIONP particle size distribution investigations and membrane architectures surrounding GIONP were carried out for their impact on membrane integrity and stability. The morphology of GIONP, membrane mimetic liposomal structures formation, and integrity were studied using transmission electron microscopy (TEM), accompanied with energy-dispersive X-ray spectroscopy (EDS), which displayed the elements distribution within each of the structures. The study uncovered that GIONP stabilizes the secondary structure of Aβ1-42, potentially offering modulation to the aggregation process. Furthermore, GIONP proved to have no negative impact on membrane integrity, implying that they could be safely employed as a therapeutic option for the modulation of peptide aggregation's pathological pathway of Alzheimer's disease. This study may contribute to broadening our understanding of nanoparticle-mediated therapies in modulating neurodegenerative disorders, highlighting their dual involvement in amyloid aggregation regulation and membrane structure maintenance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have