Abstract
The presence of sulfonamide antibiotics in aquatic environments poses potential ecological risks and dangers to human health. In this study, porous resins as adsorbents for the removal of two sulfonamides, sulfadiazine and sulfadimidine, from aqueous solutions were evaluated. Activated carbon F-400 was included as a comparative adsorbent. Despite the different surface properties and pore structures of the three resins, similar patterns of pH-dependent adsorption were observed, implying the importance of sulfonamide molecular forms to the adsorption process on the resins. Sulfonamide adsorption to the three resins exhibited different ionic strengths and temperature dependence consistent with sulfonamide speciation and the corresponding adsorption mechanism. Adsorption of sulfadiazine to F-400 was relatively insensitive to pH and ionic strength as micropore-filling mainly contributed to adsorption. The adsorption mechanism of sulfadiazine to the hypercrosslinked resin MN-200 was similar to that of the macroporous resin XAD-4 at lower pH values, whereas it was almost identical to the aminated resin MN-150 at higher pH. This work provided an understanding of adsorption behavior and mechanism of sulfonamide antibiotics on different adsorbents and should result in more effective applications of porous resin for antibiotics removal from industrial wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.