Abstract

The objective of the present study is to enhance the hydrogen embrittlement (HE) of the commercial martensitic steel (QT220). For this purpose, the heat treatments of quenching tempering and quenching partitioning are conducted, labeled as QT400 and Q&QP400, respectively. Compared to QT220, the mechanical properties of the both heat-treated specimens are reduced, nevertheless, the HE resistance is extremely promoted, resulting from the lesser dislocations, the more MoyCx, and the existence of the strained interface of cementite. Besides the above favorable factors, the presence of the ferrite is another important factor which contributes to the lowest HE susceptibility in Q&QP400, resulting from the propagation's inhibition of hydrogen induced cracks (HICs) by ferrite. The HICs behavior of QT220, QT400 and Q&QP400 are mainly influenced by the dislocation glide, the cementite at the high angle boundaries and ferrite, respectively, mainly resulting in the fractographs of quasi-cleavage, intergranular and finely fragmented quasi-cleavage, respectively. In addition, HICs always deflect when propagating to the RD//<112∼114> orientations, providing a valuable direction for research to enhance the HE resistance in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.