Abstract

The present study was performed on mixing of fine powder of aluminum and silicon carbide nano particles 25nm size each. In this process, aluminum works as matrix and silicon carbide works as reinforcement with volume fraction of 1, 1.5 and 2%. Scanning electron microscopy (SEM) and electron microscopy techniques were used for crystal structure and micro structural characterization of the nano composite material. The objective of study was to achieve uniform distribution of SiCp nano particles in the aluminum matrix. The effect of reinforcement of Silicon carbide nano particle size and its volume fraction with aluminum encouraged investigation of stress strain response, elastic modulus and yield strength of nano composite metal matrix. Nano indentation and compression test were performed to characterize the nano composite material. Yield strength, compressive strength and elastic modulus were obtained from the compression test. Whereas, nano indentation results gave the yield strength, maximum shear stress and elastic modulus. The tensile test was conducted to find out the ultimate tensile strength. FESEM and EDAX techniques were also used to evaluate the different elements and their properties of Aluminum and SiCp nano particle metal matrix nano composite. The study reveals that in the liquid metal nano particle were uniformly dispersed and the segregation of the particles near the grain boundaries is due to pushing of the nano particle during growth of grain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call