Abstract

The piezoelectric effect is widely known to have a significant physiological function in bone development, remodeling, and fracture repair. As a well-known piezoelectric material, barium titanate is particularly appealing as a scaffold layer to improve bone tissue engineering applications. Currently, the chemical bath deposition method is used to prepare green synthesized barium titanate coatings to improve mechanical and biological characteristics. Molarity of the solutions, an essential parameter in chemical synthesis, is changed at room temperature (0.1–1.2 Molar) to prepare coatings. The XRD spectra for as deposited coatings indicate amorphous behavior, while polycrystalline nature of coatings is observed after annealing (300 °C). Coatings prepared with solutions of relatively low molarities, i.e. from 0.1 to 0.8 M, exhibit mixed tetragonal – cubic phases. However, the tetragonal phase of Perovskite barium titanate is observed using solution molarities of 1.0 M and 1.2 M. Relatively high value of transmission, i.e. ∼80%, is observed for the coatings prepared with high molarities. Band gap of annealed coatings varies between 3.47 and 3.70 eV. For 1.2 M sample, the maximum spontaneous polarization (Ps) is 0.327x10−3 (μC/cm2) and the residual polarization (Pr) is 0.072x10−3 (μC/cm2). For 1.2M solution, a high hardness value (1510 HV) is recorded, with a fracture toughness of 28.80 MPam−1/2. Low values of weight loss, after dipping the coatings in simulated body fluid, is observed. The antibacterial activity of BaTiO3 is tested against E. coli and Bacillus subtilis. Drug encapsulation capability is also tested for different time intervals. As a result, CBD-based coatings are a promising nominee for use as scaffold and protective coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.