Abstract

The potential of airfoil optimisation for the specific requirements of airborne wind energy (AWE) systems is investigated. Experimental and numerical investigations were conducted at high Reynolds numbers for the S1223 airfoil and an optimised airfoil with thin slat. The optimised geometry was generated using the NSGA-II optimisation algorithm in conjunction with 2D-RANS simulations. The results showed that simultaneous optimisation of the slat and airfoil is the most promising approach. Furthermore, the choice of turbulence model was found to be crucial, requiring appropriate transition modeling to reproduce experimental data. The k-ω-SST-γ-Reθ model proved to be most suitable for the geometries investigated. Wind tunnel experiments were conducted with high aspect ratio model airfoils, using a novel structural design, relying mostly on 3D-printed airfoil segments. The optimised airfoil and slat geometry showed significantly improved maximum lift and a shift of the maximum power factor to higher angles of attack, indicating good potential for use in AWE systems, especially at higher Reynolds numbers. The combined numerical and experimental approach proved to be very successful and the overall process a promising starting point for future optimisation and investigation of airfoils for AWE systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.