Abstract

Abstract: We study the impact of heterogeneity of nodes, in terms of their energy, in wireless sensor networks that are hierarchically clustered. In these networks some of the nodes become cluster heads, aggregate the data of their cluster members and transmit it to the sink. We assume that a percentage of the population of sensor nodes is equipped with additional energy resources—this is a source of heterogeneity which may result from the initial setting or as the operation of the network evolves. We propose SEP, a heterogeneous-aware protocol to prolong the time interval before the death of the first node (we refer to as stability period), which is crucial for many applications where the feedback from the sensor network must be reliable. SEP is based on weighted election probabilities of each node to become cluster head according to the remaining energy in each node. We show by simulation that SEP always prolongs the stability period compared to (and that the average throughput is greater than) the one obtained using current clustering protocols. We conclude by studying the sensitivity of our SEP protocol to heterogeneity parameters capturing energy imbalance in the network. We found that SEP yields longer stability region for higher values of extra energy brought by more powerful nodes. Sensor nodes usually have limited energy supply and they are impractical to recharge. How to balance traffic load in sensors in order to increase network lifetime is a very challenging research issue. Many clustering algorithms have been proposed recently for wireless sensor networks (WSNs). The use of mobile sinks has been shown to be an effective technique to enhance network performance features such as latency, energy efficiency, network lifetime, etc. In this paper, a modified Stable Election Protocol (SEP), which employs a mobile sink, has been proposed for WSNs with non-uniform node distribution. The decision of selecting cluster heads by the sink is based on the minimization of the associated additional energy and residual energy at each node. Besides, the cluster head selects the shortest path to reach the sink between the direct approach and the indirect approach with the use of the nearest cluster head. Simulation results demonstrate that our algorithm has better performance than traditional routing algorithms, such as LEACH and SEP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call