Abstract

Water storage change of the lakes in the Tibetan Plateau is regarded as one of the most critical regional hydrological consequences owing to climate change. In this study, we investigate the water storage changes in 22 lakes in the Tibetan Plateau based on sequential remote sensed lake area and water level, which are derived from moderate resolution imaging spectroradiometer (MODIS) surface reflectance and Laboratoire D’Etudes en Géophysique et Océanographie Spatiales (LEGOS) altimetry data, respectively. Water storage of the lake is estimated on the basis of the relationship between lake area and water level. The method can be seen as an alternative to the conventional hydrological approaches. The results show that, during 2001–2017, most of the studied lakes in the Tibetan Plateau have shown significant increasing trends in water storage accompanied with larger lake area and higher water level. The changes in lake water storage are found in close relation to variations of climate factors such as precipitation, potential evaporation, and temperature in most lakes. The climate change impacts, however, can be amplified or attenuated by other environmental factors in some lake catchments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call