Abstract

This study aims to investigate trends in streamflow and precipitation in the period 1954–2010 in a semiarid region of the Yellow River watershed, Huangfuchuan basin, China. The combination of the wavelet transform and different Mann-Kendall (MK) tests were employed to figure out the basic trends structure in streamflow and precipitation and what time scales are affecting the observed trends. The comparative analysis with five MK test methods showed that the modified MK tests with full serial correlation structure performed better when significant autocorrelations exhibited for more than one lag. Three criteria were used to determine the optimal smooth mother wavelet, the decomposition level and the extension mode used in the discrete wavelet transform (DWT) procedure. The first criteria referred to the relative error of the wavelet approximated component and the original series. The second one was the relative error of MK Z-values of approximation component and the original series. Additionally, a new criterion (Er), based on the relative error of energy between the approximate component and the original series, was proposed in this study, with better performance than the previous two criteria. Further, a new powerful index, the energy of the hydrological time series, was proposed to verify the dominant periodic components for the observed trends. The analysis indicated that all monthly, seasonal and annual streamflow showed significant decreasing trends, while no significant trends were found in precipitation. Results from the DWT and MK tests revealed that the main factors influencing the trends in the monthly and seasonal series in Huangfuchuan watershed are intra-annual cycles, while the leading factors affecting the trends in the annual series are decadal events. Different driving factors (e.g., seasonal cycles, solar activities, etc.) related to the periodicities identified in these data types resulted in this discrepancy.

Highlights

  • The processes that occur in the atmosphere and the earth’s surface, such as precipitation and streamflow, are mainly driven by the energy exchange between the sun, the earth and the atmosphere [1]

  • The Huangfuchuan basin, an important semiarid watershed in the middle reaches of the Yellow River, was selected as a meso-scale catchment representative of the semiarid climates that predominate across the Yellow River watershed, in order to detect the effects of climate variability and change

  • The main purpose of this study is to investigate the possible trends and the basic structure of the trends in the mean streamflow and the total precipitation in Huangfuchuan watershed by analyzing its monthly, seasonal and annual time series through the wavelet transform and different MK tests

Read more

Summary

Introduction

The processes that occur in the atmosphere and the earth’s surface, such as precipitation and streamflow, are mainly driven by the energy exchange between the sun, the earth and the atmosphere [1]. Changes in hydrological cycle may in turn affect the availability and quality of water resources, and the sustainability of water management, in dry regions [7,8,9,10]. The Huangfuchuan basin, an important semiarid watershed in the middle reaches of the Yellow River, was selected as a meso-scale catchment representative of the semiarid climates that predominate across the Yellow River watershed, in order to detect the effects of climate variability and change. A better understanding of climate variability and change on both a basin and regional scale is obviously critical to water management and sustainable ecological conservation of arid and semiarid regions. Many studies which consider both climate variability and change have centered on the assessments in hydro-climate parameters such as temperature, precipitation and streamflow [13,14,15,16,17,18]. Hydrological variables have been considered as useful indicators of how the climate has changed and varied over time, it is needful to research trends associated with hydrological events [19,20]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call