Abstract

The Great Salt Lake entered the zeitgeist of environmental concern in 2022 when a coalition of scientists and activists warned in a highly publicized report that the lake might be just five years away from complete desiccation, a possibility one state official warned was tantamount to an “environmental nuclear bomb”. Shortly thereafter, an unpredicted and unprecedented pluvial winter resulted in an increase in inflow, temporarily halting the lake’s decline and prompting Utah’s governor to mock the dire prediction as “a joke”, an outcome that speaks to the tension between agenda-setting and trust-building that researchers face when sharing worst-case warnings, particularly those based on short-term variability. Here, we describe a robust relationship between the lake and groundwater in the surrounding region and demonstrate how coupled models can thus be used to improve lake elevation predictions, suggesting that while the situation may not be as dire as some have warned, the lake remains at long-term risk as a result of climate warming. We further suggest that efforts to communicate the risk of future desiccation should be informed by stochastic variability and guided by long-term fluctuations in the total water storage of the endorheic lake’s watershed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.