Abstract

Recently, molecular dynamics (MD) simulations were utilized to show that Schrage theory predicts evaporation/condensation mass fluxes with good accuracy in the case of monoatomic and non-polar molecular fluids. Here, we examine if they are equally accurate for molecular polar fluids, such as water. In particular, using molecular dynamics (MD) simulations, we study the steady state evaporation/condensation processes of water in a one-dimensional heat-pipe geometry to ascertain the validity of Schrage relationships. Non-equilibrium mass flow is driven by controlling the temperatures of the source/sink. Equilibrium simulations are utilized to evaluate the saturation properties and the mass accommodation coefficients as a function of temperature. Our results indicate that Schrage equations predict the evaporation/condensation rates of water with good accuracy. Moreover, we show that molecular velocity distributions in the vapor phase are indeed Maxwellian distributions shifted by the velocity of the macroscopic vapor flow, as assumed in Schrage's theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.