Abstract
In warhead verification, physical encryption technology could play a critical role in protecting confidential information on geometric structure and isotopic composition of a true warhead. As an important supplement to physical encryption, algorithmic encryption still has great potential in improving defense-in-depth security for nuclear arms control verification. To further supplement feasible nuclear arms control verification technologies, we propose a verification method based on neutron induced fission reactions employing both physical field flux encryption and algorithm encryption. Physical encryption processes the classified geometry or composition information by encrypting the fission neutron signal of the tested item with a randomly shielded mask. Algorithm encryption adopts pixel scrambling, pixel diffusion for secondary encryption. To verify the robustness and security of this new verification method, numerical simulations are performed using the Monte Carlo toolkit Geant4. Verification results indicate a high level of robustness and security with a low level of noise (∼<0.5%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.