Abstract
Mixing is an essential manufacturing process in various industries. The processing procedure and final product quality depend on the homogeneity of mixing. Because it is difficult to evaluate mixing systems experimentally, the discrete element method is commonly employed. However, as the number of particles increases, this approach incurs huge computational costs. The coarse grain model offers a potential solution, but its applicability has not been widely demonstrated; this study aimed to elucidate the upper limit for applying the coarse grain model. To determine the appropriate simulation parameters, calibrations were performed by comparing the powder bed in experiments versus simulations. Various mixing processes were numerically evaluated, and the mixing characteristics were qualitatively consistent among all coarse-grained ratios. These mixing systems were also evaluated quantitatively based on Lacey’s mixing index, which indicated that the upper limit of the coarse-grained ratio was five times. It is therefore important to secure a sufficient number of particles in each cell and to use an appropriate number of cells. This study clarified the upper application limit and criteria for the coarse grain model and verified the maximum coarse-grained ratio (five times). This approach can be used to determine the coarse-grained ratio and reduce computational costs.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have