Abstract

The adverse effects of rare earth elements (REEs) have been increasingly reported in the past decades and have raised concern about their environmental toxicities. However, the available data is insufficient to elucidate the toxic effects, mechanisms, and whether the toxicity across all REEs is uniform. In this study, zebrafish were exposed to 0, 0.8, 1.6, 3.2, 6.4, 12.8 and 25.6 mg/L Ln(NO3)3•6H2O to test the acute toxicity of La(III), Ce(III), and Nd(III). LC50 of the three lanthanides was compared to the extent of the impact on gene expression. We carried out the functionally grouped network-based transcriptome analysis using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore the molecular mechanisms. The acute toxicity test showed that LC50 of La(III), Ce(III), and Nd(III) were 2.53, 2.03, and 2.76 mg/L, respectively. Consistent with acute toxicity, Ce(III) caused a little more DEGs than La(III) and Nd(III). Some biological processes such as metabolism of xenobiotics, oocyte meiosis, steroid biosynthesis, DNA replication, and p53 signaling pathway were affected following exposure of all the three lanthanides. Ce(III) also induced changes in the chemokine-mediated signaling pathway. The results indicated that the lethality is comparable, and the toxic patterns are similar across the three lanthanides. This study gives comparative research on the toxicities of three lanthanides to model organism zebrafish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call