Abstract
We developed a comprehensive mathematical model of cancer immunotherapy that takes into account: i) Immune checkpoint blockers (ICBs) and the interactions between cancer cells and the immune system, ii) characteristics of the tumor microenvironment, such as the tumor hydraulic conductivity, interstitial fluid pressure, and vascular permeability, iii) spatial and temporal variations of the modeled components within the tumor and the surrounding host tissue, iv) the transport of modeled components through the vasculature and between the tumor-host tissue with convection and diffusion, and v) modeling of the tumor draining lymph nodes were the antigen presentation and the development of cytotoxic immune cells take place. Our model successfully reproduced experimental data from various murine tumor types and predicted immune system profiling, which is challenging to achieve experimentally. It showed that combination of ICB therapy and normalization treatments, that aim to improve tumor perfusion, decreases interstitial fluid pressure and increases the concentration of both innate and adaptive immune cells at the tumor center rather than the periphery. Furthermore, using the model, we investigated the impact of modeled components on treatment outcomes. The analysis found that the number of functional vessels inside the tumor region and the ICB dose administered have the largest impact on treatment outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.