Abstract

In this study, we synthesized cobalt sulfide (CoS) nanostructures for supercapacitor applications via a one-step hydrothermal method. The effect of hydrothermal temperature on the synthesis process was investigated at temperatures ranging from 160 °C to 220 °C. The structural, morphological, and elemental analyses were performed using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). The XRD patterns show the hexagonal phase of CoS, and the samples prepared at 200 °C have high crystallinity. The samples prepared at other temperatures show amorphousness at lower 2-theta angles. EDX indicated that the sample was of high purity, except that the sample prepared at 220 °C had an additional oxygen peak, indicating that sulfur is not stable at high temperatures. In addition, a cobalt oxide (CoO) peak is also observed in the XRD data of the sample prepared at 220 °C. SEM images show that the particles in the samples prepared at 160 °C and 180 °C are agglomerated due to the high surface energy, whereas the samples prepared at 200 °C and 220 °C have a distinct morphology. Electrochemical analyses such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GCD) were performed on all samples. The CoS sample prepared at 200 °C exhibited a high specific capacitance (Csp) of 1583 F/g at a current density of 1 A/g, with low resistivity and high cycling stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call