Abstract

The vertical structure of the marine atmospheric boundary layer (MABL) and the summertime low-level jet (LLJ) along the east coast of the U.S.A. was studied in the framework of a joint expedition (CBLAST-Low), carried out during the summer of 2003 (31 July–27 August) at Nantucket island, Massachusetts, U.S.A. Analyzing measurements from radiosondes, in-situ and remote sensing systems, it was found that within the lower part of the stable MABL, intermittent and persistent LLJ events were frequently observed. Evidence is presented implying that the analyzed jet case was induced by the interaction of a slow-moving cyclone over north-eastern U.S.A. and the stationary high pressure system over the Atlantic Ocean, as well as by the sloping inversion of the MABL. Focused on a 5-day period of persistent south-westerly (marine) flow, the analysis of sodar and radiosonde data revealed the presence of a stable layer associated with increased static stability just before the emergence of low-level flow acceleration. As indicated by the Richardson number profiles, the increased stability of the lower MABL suppressed turbulence, allowed the decoupling of LLJ from friction, providing a favourable environment for the development of inertial oscillations. Significant amplitudes of inertial motions, which were confirmed by the application of a Hilbert–Huang transform, are associated with the acceleration at the LLJ’s core, due to the frontal events and the subsequent frictional decoupling, both leading to a modification of the large-scale flow structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call