Abstract

Context. Very low-mass (VLM) stars and brown dwarfs (BDs) present a different rotational behaviour from their solar mass counterparts. Aims. We investigate the rotational evolution of young VLM stars and BDs using Monte Carlo simulations under the hypothesis of disk locking and stellar angular momentum conservation. Methods. We built a set of objects with masses ranging from 0.01 M⊙ to 0.4 M⊙ and considered models with single- and double-peaked initial period distributions with and without disk locking. An object is considered to be diskless when its mass accretion rate is below a given threshold. Results. Models with initial single-peaked period distributions reproduce the observations well given that BDs rotate faster than VLM stars. We observe a correlation between rotational period and mass when we relax the disk locking hypothesis, but with a shallower slope compared to some observational results. The angular momentum evolution of diskless stars is flatter than it is for stars with a disk which occurs because the moment of inertia of objects less massive than 0.2 M⊙ remains pratically constant for a time scale that increases with decreasing stellar mass. Conclusions. Comparing our results with the available observational data we see that disk locking is not as important in the low-mass regime and that the rotational behaviour of VLM stars and BDs is different from what is seen in their solar mass counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.