Abstract

AbstractThe nitrogen and oxygen isotopic composition of nitrate in ice cores offers unique potential for examining reactive nitrogen oxide (NOx) budgets and oxidation chemistry of past atmospheres. A low‐latitude record is of particular interest given that the dominant natural sources of NOx and production of hydroxyl radical are most prevalent in the tropics. Any interpretation of nitrate in ice cores, however, must first consider that nitrate in snow is vulnerable to postdepositional loss and isotopic alteration. We report and assess the integrity of nitrate–δ15N, –δ18O, and –Δ17O in a 30 m ice core from a high‐elevation site in the central Andes. Clear seasonality in δ15N, δ18O, and nitrate concentration exists throughout most of the record and cannot be explained by photolysis or evaporation based on our current understanding of these processes. In contrast, nitrate in the upper ~12 m of the core and in a snowpit shows very different behavior. This may reflect alteration facilitated by recent melting at the surface. The relationships between δ15N, δ18O, Δ17O, and concentration in the unaltered sections can be interpreted in terms of mixing of nitrate from discrete sources. Transport effects and an englacial contribution from nitrification cannot be ruled out at this time, but the observed isotopic compositions are consistent with expected signatures of known NOx sources and atmospheric oxidation pathways. Specifically, nitrate deposited during the wet season reflects biogenic soil emissions and hydroxyl/peroxy radical chemistry in the Amazon, while dry season deposition reflects a lightning source and ozone chemistry at higher levels in the troposphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call