Abstract

BackgroundWith advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin–electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode.MethodsWe compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin–electrode impedance during the application of controlled motion to the electrodes.ResultsThe design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced impedance change were caused by the electrode motion and contained the same frequency components as the applied electrode motion pattern.ConclusionWe found that stabilizing the skin around the electrode using an electrode structure that manages to successfully distribute the force and movement to an area beyond the borders of the electrical contact area reduces the motion artifact when compared to structures that are the same size as the electrode area.

Highlights

  • The monitoring of various bioelectric signals, such as electrocardiograms (ECG) and the electromyograms (EMG), has already been implemented into wearable systems

  • We aim to investigate whether we can reduce the motion artifact by the electrode structure design that we hypothesize to affect the origins of the motion artifact—the electrode–skin interface and the skin deformation

  • We investigate how these sources of motion artifact can be affected by different electrode support structures that, by design, reduce the skin and/or skin–electrode interface deformations that are caused by the motion of the subject or the direct motion applied to the electrode

Read more

Summary

Introduction

The monitoring of various bioelectric signals, such as electrocardiograms (ECG) and the electromyograms (EMG), has already been implemented into wearable systems. One of the major issues wearable biosignal monitoring systems face is the motion artifact. A reduction in the motion artifact would be a big step towards the widespread use of dry electrodes in wearable garments that monitor physiological signals. Increased signal quality and reliability will result in systems that are intended for leisure and personal use but would be suitable for monitoring for medical purposes, with better wearability and comfort. Motion artifact reduction methods such as adaptive filtering use supplementary signals, skin–electrode impedance or motion monitoring to investigate the motion artifact after it has been generated. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. Reducing the motion and deformation at this interface should have positive effects on signal quality. We aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call