Abstract
Iron is emerging as a key player in the search for efficient and environmentally benign methods for the functionalisation of C-H bonds. Non-heme iron enzymes catalyse a diverse array of oxidative chemistry in nature, and small-molecule complexes designed to mimic the non-heme iron active site have great potential as C-H activation catalysts. Herein we report the synthesis of a series of organic ligands that incorporate key features of the non-heme iron active site. Iron(II) complexes of these ligands have been generated in situ and their ability to promote hydrocarbon oxidation has been investigated. Several of these systems promote the biomimetic dihydroxylation of cyclohexene at low levels, when hydrogen peroxide is used as the oxidant; allylic oxidation products are also observed. An investigation of ligand stability reveals formation of several breakdown products under the conditions of the oxidative turnover reactions. These products arise via oxidative decarboxylation, dehydration and deamination reactions. Taken together these results indicate that competing mechanisms are at play with these systems: biomimetic hydroxylation involving high-valent iron species, and allylic oxidation via Fenton chemistry and Haber-Weiss radical pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.