Abstract
Enzymes containing heme, non-heme iron and copper active sites play important roles in the activation of dioxygen for substrate oxidation. One key reaction step is CH bond cleavage through H-atom abstraction. On the basis of the ligand environment and the redox properties of the metal, these enzymes employ different methods of dioxygen activation. Heme enzymes are able to stabilize the very reactive iron(IV)-oxo porphyrin-radical intermediate. This is generally not accessible for non-heme iron systems, which can instead use low-spin ferric-hydroperoxo and iron(IV)-oxo species as reactive oxidants. Copper enzymes employ still a different strategy and achieve H-atom abstraction potentially through a superoxo intermediate. This review compares and contrasts the electronic structures and reactivities of these various oxygen intermediates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.