Abstract

This study undertook a comprehensive examination of the double perovskite complex Ba2FeWO6, investigating its structural, electrical, magnetic, thermal and elastic characteristics. The study used density functional theory (DFT), specifically the full potential linearized augmented plane wave (FP-LAPW) method. It also used different approximations, including the generalized gradient approximation (GGA) and the modified Trans-Blaha (TB-mBJ) approach, to improve the accuracy of the band gap estimation more accurate. Additionlly, the GGA + U approach, incorporating the Hubbard correction term (U), was utilized. Our findings indicate that Ba2FeWO6 exhibits indirect half-metallic band gaps in the (L-X) direction, with value of 0.91 eV and a net magnetic moment of 4 μB, predominatly influenced by the iron atom. The compound demonstrated exceptional characteristics suitable for thermoelectric applications, particularly at lower temperatures. Furthermore, the elasticity analysis revealed low brittleness, facilitates its manipulation in manufacturing procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.